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ABSTRACT

Maas limiting flow characteristics for a 55 LSD
tube with a Borda type inlet have been assessed over
large ranges of temperature and pressure (0.68 5
T/Tc < 2.3; P/P, a 3) using fluid nitrogen (To =.
126.3 K, Pc.= 3,417 MPa). Under certain conditions,
separation and pressure drop at the inlet was suffi-
ciently strong to permit partial vaporization and the
remaining fluid flowed through the tube as if it were
a free jet. An empirical relation was determined
which defines conditions under which this type of
flow can occur. A flow coefficient is presented
which enables one Lo estimate flow rates over the ex-
perimental range, A flow rate stagnation pressure
map for selected stagnation isotherms and pressure
profiles document these flow phenomena.

INTRODUCTION

plow separation represents a divergence of
streamlines from a bounding . surface and may or may
not be accompanied by a free interface. It repre-
sents a common event in fluid dynamics. Airfoils are
highly susceptible to separation whether an element
of a power system such as a compressor or turb?ne or
an aerodynamic surface of a wing or .empennage, In.
such components separation is undesirable. However
in fluid dynamic controls, separation is used advan-
tageously. In fluid circuit logic, separation is
used to switch power circuits; in flight, spoilers
rapidly decrease lift; and in seals, separation can
assist in controlling the loss of the working fluid.

In internal flows, one of the most common inlets
is sharp edged,- However, the inlet most susceptible.
to separation is the Borda tube. In either case, a
vena-contracta is formed. and the region of detachment

depends on fluid conditions. If the fluid has the
potential to vaporize under these circumstances, the
the problem is substantially more complicated,

While many texts and papers deal with such inlet
phenomena, few have addressed the problem of entrance
effects on two phase choked flows (1-6 and one ad-
dresses the affects at very large L,.

In engineering applications, it is customary to
arbitrarily assign a friction factor.(L/D) equivalent
to account for entrance losses. While this is en-
tirely justified in many problems, it is not for
sealing surfaces. In high performance seas, the en-
trance effects and associated zones of separation
cannot be ignored or arbitrarily assigned for they
play a major role in seal dynamics; as will be estab-
lished, entrance conditions can control mass flow and
establish pressure distributions for mass limiting
flows.

While the material discussed herein is germane
to all of the above fields and to separation phenom-
ena,. it is primarily applicable to f a.uid control and
dynamics of sealing surfaces. Thus the purpose of
this 7.aper is to present flow rate and axial pressure
profile data established by mass limiting flows
through a.5 L/D straight tube with a Borda type in-
let over a large range of stagnation temperatures and
pressures including the critical region.

APPARATUS AND INSTRUroENTATION

The basic flow facility was of t 1Z blm:down type
and is described in detail in Ref, S. A photograph
of the installed test section .(fig. 1) illustrates
the pressure taps and associated plumbing. The flow
was upward, around the U and downward through the
teat section. The flow rates were metered using a
venturi flowmeter located in the bottom of the storage
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tank, Inlet stagnation conditions were measured in
the mixing chamber shown immediately behind the scale
in Fig, 1,

The 55 L/D straight 0,483 rm diameterltube teat
section consisted of two parts, the Bard& type inlet
and a straight tube with a 7 0 diffuser (see figs. 1
and 2). A. photograph of the Bards type inlet in shown
in Fig. 3, While not a true Borda inlet, the flow
must still experience areversal prior to entering
the toot section.

Bie'hteen local pressure taps, three stagnation
pressures, and a backpressure were used to establish
the axial pressure profiles. The tap locations are
given in Table I.

The parameters were monitored using a mini
computer-CRT display at 1}-second update intervals
until all conditions appeared satisfactory. At that
tima the signals were digitized, recorded, and subse-
quently reduced using the LeRC data acquisition sys-
tem. While the accuracy of the statee transducers
was limited to 1/2 percent and the range was large,
systematic e,.libration and subeequbnt checks with
higher sensitivity differential pressure transducers
indicated a relative difference of 0,1 percent could
be established and reproduced.

FLOW 140DEL AND DISCUSSION

The type of separation phenomena encountered
herein results from a discontinuity in the shape of
the bounding surface. The theoretical inviscid
streamlines conform to the bounding surface. No such
conformation to the surface exists with the viscous
flow and separation is initiated. Growth or decay if
this separation, or perturbation, depends on the de-
gree of the discontinuity. The true Bards, inlet
causes a full reversal of the streamline at the inlet
and represents the strongest degree of discontinuity.
for simple geometries. As such, the incompressible
contraction coefficientl of 0.5 (P) represents the
most .severe separation phenomenon for simple tube in-
lets,

The geometry of the free streamline in potential
flow is found by integrating the real and imaginary
components of dz (Lo) (see fig. 4).

tal findin{ „ A sketch of this model is shown as
Fig•5,

(1) The entrance contraction is sufficiently
strong to cause separation and vaporization, that is,
the radial velocity is significant and forces separa-
tion resulting in the free streamline some distance
from the wall.

(2) The entrance vortex zone, 2 to 4 dia mterc
in length, appears to always exist netting up an ini-
tial recompression zone.

(3) Under certain conditions (low temperature,
high pressure fluid) the entrance vortex is suffi-
ciently weak and initiates partial recompression;
usually this recompression is only to the saturation
pressure3 The fluid jet then traverses the tube
length with only a small pressure rise.

(4) For the free jet conditions, the vapor and/or
boundary layer growth is assumed to form a diffuser.
This zone may extena through the tube or may not exist
at all.

(5) Strong recompression in the secondary zone
can occur within the tube due to transition or be
forced on the flow by addWiting the backpressure.
This zone may act exist within the 55 L/D or it may
intersect the initial recompression. zone.

(6) Metartable states and normal states of con-
densation and valorization are assumed to occur.

RESULTS AND DISCUSSION

Pressure Profiles

Typical axial pressure profiles for the 55 L/D
tube with Bards, inlet are illustrated as Figs. 6 and, 	 {
7. For reference purposes, a typical pressure profile	 j
for the gaseous state is given on Fig. 6, Except for 	 j
the abrupt nearly two to one characteristic drop at 	 1
the inlet followed by recompression, it :appears an a 	 1
standard friction profile for atube.

Holding inlet stagnation conditions nearly con-
stant while the backpressure is varied resulte, in the
family of profiles displayed on Fig. 6. At a back-
pressure of 1,69 MFa (245 psia), the pressure profile
near the exit appears monotonic increasing. This is 	 -
a transition point which signals that secondary re-

I	 ^

i
i

compression is now within the tube.	 Further increases
in backpressure move the secondary recompression zone

z = K + iY = _ f 
VO flw dw
	 (1)

O
further into the tube until, at sufficiently high back-
pressures the system finally becomes unchoked.	 Pro-
files as run 1160 are very difficult to obtain by

re
The free streamline can be defined in terms of. the

m
varying the backpressure.	 Secondary recompression

parameter	 where 0 n render from 0 to within the duct is most easily estaolished by changing
stagnation conditions..	 In Fig	 i, recompression in

YO	 ^B
sin	 + log

2(2)
cae —
{	 (2), (2)

effected along the 117 K isotherm by decreasing the
stagnation pressure from 7.28 MPa (1055 psia) to 5.93
MPa (860 psis),	 At 7.28:: MPa (1055 psis) the initial

= B = n 
is to about 1.	 MPa

monotoniclriselowedpby  the characteristic 	 in pres-	 '•`(27r - 9 + sin 0)	 (3)y0
1

sure to the exit in the characteristic diffuser zone

-	 While the above applies to the two-dimensional (fig. 5),
ease (fig. 4(a)), it can. be shown. that similar stream- At B•79 MPa (985 psia), the secondary . recompres-

•	 lines exist for the axisymmetric case (10	 and the, sion zone is within the tube and at 5.97 MPa (865
contraction area or contraction coefficient is still psia) the zone has moved near the initial recompres-

0.5, A2/Al - 1/2 (fig, 4(b)), -see Ref. 9.. sion zone; note that when the two recompression zones
Although the focus of this paper is to provide merge, the Initial recompression recovery pressure

characteristic flow and pressure profile data for a equals that of the secondary recompression zone,. that

Borda inlet, a model of the flow phenomena is sug- is, more characteristic of the gas profile. 	 One	 `-
Seated in an attempt to explain the major experimen- should note that once transition has occurred, all

- profiles merge into a single profile downstream of 	 iA

r A2/ is flow area to tube	 pressurizing gas.-	 channel width; for a tube 	 A	
- crease over the course. of a run due to heating by the 	 ^.

area.	 3Based on inlet stagnation conditions. 	 9 {-
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For a channel or slot, the ratio of flow width to	 2The stagnation temperature usually tends to in- 	 1.



of the transition point for a given isotherm,
Secondary recompression can be made to take place

within the tube by varying the stagnation temperature
along an isobar. Along the 10,45 MPa (1515 Pala) iso-
bar at 121.7 K, the zone of secondary recompression is
greater than 55 L/D, that is, beyond the tube exit,
even though the temperature is close to critical,. The
initial zone of recompression is to about 1,62 MPa
(235 Pala), followed by the characteristic monotonic
rise in Pressure through the characteristic diffuser
zone. At 127,8 K, which is greater than the critical
temperature (Tc - 126,3 K), the zone of secondary re-
compreanion is within the tube, The initial recas-
preesion pressure is to about 2.03 MPa (295 Pala). At
130,5 K, the zone has moved further toward the inlet
while the pressure in the initial recompression zone
has increased to about 2,24 MPa (325 psia), It would
appear that the jet cannot be sustained for conditions
close to the thermodynamic critical point for 55 L/D.
This does not mean that lesser. L/D couli . or could not
sustain a jet. In either case, the mador control is
still near the inlet. To illustrate the magnitude of
the pressure effect, inlet, stagnation conditions where
Pr = 3.1 and Tr - 0.68 results in a reduced pres-
sure in the initial recompression zone of 0,0242 and
an average diffuser zone reduced pressure of 0,0585.
This represents pressure ratios of 128:1 and 53:1,
respectively, Such pressure changes can effect seri-
ous instabilities in seals, rotor dynamics, and heat
exchangers alike.

One of the major questions now becomes; Is there
a way to predict the conditions under which the zone
of secondary recompression will occur within the tube?
Theoretically not at this time, but empirically an ex-
pression wan determined as illustrated in Fig, S. For
the inlet stagnation conditions less than this locus,
secondary recompression does not occur within the
55 L/D tube,

For conditions, above the locus, secondary re-
compression will occur somewhere within the 55 L/D
tube.

An empirical expression for this locus in the
pr^:sent experiaent is:

Pr CTr
where	

(4)

C1(L/D,e) - 3,6	 (5)

Equations (4) and (5) are written in the above form
because it is expected that the constant C 1 depends
on the total tube L/D, which in this case. was 55, and
surface roughness e. For these tests the tube was
smooth honed with emery paper,

Flaw Rate

Reduced flow rate data as a function of reduced
stagnation pressure for selected isotherms are given
as Fig. 9.:. Attempts to predict these flow rates theo-
retically were unsuccessful, no 'he authors resorted
to standard flow coefficient techniques. By calcu-
lating the isentropic nonequilibrium two-phase choked
flow rate according to the model of Henry and Fauske4
(11 ,. one can define  flow coefficient as:

CO( Pr,Tr) _ GGItG*G = GT1	 (6)

As can be seen from Fig. 10, the coefficient of

4Cha.rta^ of the ideal isentropiel:ows are available
in Ref. 12.

Eq. (6) is strongly dependent on reduced temperature,
increasing from about 0.54 at Tr - 0.67 to 0.8 at
Tr - 1.2; its value then decreases to 0.73 for the
gas. Further, it is weakly dependent on pressure
away from the saturation locus. At the saturation
locus the nonequilibrium model predicts 00 values
less than the locus of Fig. 10, see isolated points
of Fig. 9 9 which may be two ,phase. Between T = 0.9.
and 1.0, the data appear to reach a plateau followed
by an abrupt rise.

So by calculating the iaentropic flow rate using
tine nonequilibrium model and applying the flow coef-
ficient (fig. 10), the flow rate for this configura-
tion can be determined at any temperature or pressure
including the critical region,

While the effect of secondary recompression on
the pressure profiles is very significant, little
change in the flow rate can be found using Eq. (6)
and comparing data with the theoretical curves of
Ref, 12, This, of course, implies that the mass
limiting .effect oncurs at the inlet, not at the exit.

Fluid properties for evaluating 0.I were ob-

tained using the computer code established in Ref. 13.

SUMMARY

Some flow characteristics in a conscant area duct
with a Borda type inlet, as may be found in some seals
applications and boilers, have been assessed over a
wide range of temperature and pressure (0.68 5 T/Tc
< 2,3; P/Pa < 3) with fluid nitrogen. (To = 126,3 K,
Pc = 3.417 MPa). The 55 L/D test section with Berle.
inlet has a 70 diffuser at the exit.

Under certain conditions, separation at the inlet
was sufficiently strong to permit the fluid to flow
through the tube as if it were a free jet; in these
cases, the diffuser zone extended to tht physical dif-
fuser and secondary recompression did, not occur within
the tube, Otherwise some combination /if the initial
recompression - diffuser - secondary recompression
zones occurred within the tube. In the critical re-
gion the diffuser zone vanishes. An empirical cri-
terion was established to determine when secondary
recompression would occur within the tube.

The flow coefficient(Gr/Gr ) varied nonlinearly

with temperature from 0.54 at TjTc = 0,68 to 0.8 at
T/Tc = 1.5 to 0.73 for the gas (T/T, = 2.3), The
coefficient is weakly dependent on pressure except
near saturation where the coefficient tends to unity,
Moreover, at a reduced stagnation pressure P/Pc = ,
3,1 and reduced temperature of 0,68 the average axial
reduced pressure was 0.0585 ,, over a 50:1 change, The
ratio of the stagnation pressure to the initial re-
compression zone pressure was over 125:1.

Flow rates for selected isotherms and pressure
profiles are presented for this configuration to docu-
ment these flow phenomena.

SYMBOLS

A area, =2

B	 slot or channel width, cm

C1 constant of Eq. (5)

C0 flow , coefficient, Eq. (6)

D	 tube diameter, em

G	 flow rate, g/cm2-s

3



Or reduced flow rate

O* flow normalizing parameter, 	 coc Zc,
6010 g/cm2-s, for nitrogen

L	 tube length, cm

P	 pressure, MPa

Pr reduced pressure, P/Pc

R	 gas constant, MPa-c:a3/g -K

T	 temperature, K

Tr reduced temperature, T/To

V	 specific volume, cm3/g

VO velocity parameter

w	 complex potential

X	 distance, cm

x0 dimensionless distance

Y	 distance, cm

y0 dimensionless distance.

Z	 compressiU.',lity, PV/RT

z	 complex crordinate, cm

6	 parameter

P	 density, g/cm3

6	 surface. roughness .ratio

5	 boundary layer thickness, cm

Subscripts;

c.	 critical

I isentropic

0 . stagnation
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em  in, em in.

PO Mixing chamber pie -2,5 -1

Pol Line at top P11 -1,3. -,5
of U P12 ,64 -,125

a25,1 a-9.87P02	 - P13 -.32 -,125

Pl. -26,6 .10.48 P14 .32 ,125

P2 -26 -10,73 P15 .64 .25

P3 -24,5 -9.65 1'16 1,3 ,5

F4 -17.8 -7 P17 2.5 1
PS -15.2 -6 Pie 5.1 2
P7 -10.2 -4

PO ,, 7.6 -3 P6nck Immediately oputr8emofb
.	 of	 nekpreeouro

P9 .5,1 -2 control valve

aPrese, New York, 1975, pp. -99-306,
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i

	

X 2.27 1.8951	 ^I^-- . 04 - . 051.016 - . 021

	

2.83 (1.  1151	 I	 —^
—;--. 08(.03)

^t PR SSURE TUBE TO
TRANSDUCER

TYPICAL PRESSURE TUBE INSTALLATION

Fig ,ire 2 - Schematic of 55 LID test section with borda type inlet. See table I
'or pressure tap locations.
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Figure 3. - Borda inlet.
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b) Tube

Figure 4. - Schemat-c for theoretical stream-
lines for a borda inlet.

FREE INITIAL CHARACTERISTIC	 SECONDARY PHYSICAL
VORTEX RECOM- DIFFUSER RECOM- DIFFUSER
ZONE PRESSION ZONE PRESSION

ZONE I ZONE

VAPOR
^yi --^ N

`L A 1 `A2	 A2/A1 - 112

Figure 5. - Suggested model for 55 UDstraight tube with borda type inlet.



Q Po, TO RUN
g/S MPa psia K

a	 727 3.63 527 88.9 1307
a	 723 3.61 524 89.2 130B
0	 721 3.61 523 89.5 1309
0	 719 3.59 521 90.4 1310
n	 715 3.59 521 91.4 1311
0	 699 3.61 524 93.5 1312
v	 28 1 4 64 672 ?Ri Ir"	 rac

n

f 

	

100	 S GAS
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q 500-Nn
W 400 4r 3!
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100	 1
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GAS

4	 8

P0
2	 BACK
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AXIAL POSITION, in.

Figure 6. - Typical pressure profiles - axial position 55 LID straight
tube with Borda inlet.
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W	 PO.
RUN

q1S	 MPa	 psia K

v	 1025	 10.54	 1528 130.5 1302
a	 1052	 10.45	 1515 127.8 1256
0	 1122	 10.43	 1512 121.7 1294

0	 821	 6.02	 873 116.8 1161
0	 893	 6.90	 1000 117.0 1160

A	 929	 7.32	 1062 116.0 1159

1600(_  6	 1259	 10.13	 1469 86.2 1249

1500 10.45 MPa 11315 psial STAGNATION ISOBAR
10'	 n

14M

1300- 9

1200 81
1100

Q 1000
CL

7	 K S , 'AGNATION ISOTHERM
900f 6 t^ ;
800

5!W 700 • W 127.8 K ,	 f10. 34 MPa 11315 psia)
a a ,' " STAGNATIUn. ISOBAR

	

600	 41.

	500	 130.5 K,,

	

400	 -3

	300	 2'-

	

200	
1 r	 121.7 K 	 117 K STAG-

	

100	 NATION ISOTHERM

	

0 1	0	 ._^. ^t-8	 - It-1 	 - -	 --	 -_j

-32 -28	 -24 -20 -16	 -12	 -8	 -4	 0	 4	 E

P	 AXIAL POSITION. cm
02 	 BACK

14	 i	 i	 J'	 i	 '	 L L i	 L	 i k—
IN	 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0	 1	 2

AXIAL POSITION, in.

Figure 7. - Typical pressure profiles - axial position 55 UD straight tube
with Bord3 inlet.
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O 0.665
0 .736

0 •819	 FLUID NITRO(EN
Z^ • 87	 Pc • 3.417 MPa
O .903	 Tc • 126. 3 K
N .925
v • 98

1.0
0 1.07
4 1.13
0 1.2

*LOCUS OF SECONDARY

RECOMPRESSION. ..e0o

I	 I-

1.0

c^

3	 .5

RECOMPRES-
SION DOES

NOT OCCUR
WITHIN
THE TUBE

RECOMPRES-
^SION WITHIN

TUBE

RECOMPRESSION WITHIN

1. J

	

PR • 3.6 TR7	
THE TUBE

8	 RECOMPRESSION DOES NOT
OCCUR WITHIN THE TUBE

►— .
62	 4	 6 8 1	 1	 4

P R • PdPc

Fi gure 8. - Flow transition region as a function of reduced pressure
and temperature for Borda inlet =55 UD straight tube - T R 1.
Fluid nitrogen.

0
	

1.0
	

2.0
	

3.0
PR ' PIyPc

Figure 9. - Reduced flow rate as a function of reduced pressure for
selected isotherms. Borda inlet --55 UD straight tube.
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L^ a5
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T R ' TdTc
Figure 10. - Reduced flow rate ratio versus reduced temperature for

55 UG straight tube with a Borda inlet. Fluid nitrogen. 0- two
phase).
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